Abstract

Poplar are important forestry species in China, but the Botryosphaeria dothidea pathogen causes serious economic losses worldwide. To identify candidate B. dothidea resistance proteins and explore the molecular mechanisms involved in poplar-pathogen interactions, proteomic responses of stem samples from resistant and susceptible poplar ecotypes to B. dothidea were investigated using nanoflow liquid chromatography-tandem mass spectrometry with label-free quantitative analysis. We identified 588 proteins, divided into 21 biological process categories including 48 oxidoreductases, 72 hydrolytic enzymes, 80 metabolic enzymes, and 29 proteins of unknown function. Differential proteome analysis revealed large differences between resistant Populus tomentosa Carr and susceptible Populus beijingensis Hsu ecotypes before and after inoculation. Among 102 identified proteins, 22 were highly upregulated in the resistant genotype but downregulated in the susceptible genotype. Proteins induced in P. tomentosa Carr in response to B. dothidea are associated with plant defenses including oxidoreductase activity (catalase, isocitrate dehydrogenase, and superoxide dismutase), phenylpropanoid biosynthesis and phenylalanine metabolism (alcohol dehydrogenase), photosynthesis (ATP synthase subunit alpha, ATP synthase gamma chain, photosystem I P700 chlorophyll a apoprotein A2, photosystem II CP47 chlorophyll apoprotein), carbon fixation (pyruvate kinase, triosephosphate isomerase, malic enzyme, phosphoglycerate kinase, ribulose-1,5-bisphosphate carboxylase, and ribulose bisphosphate carboxylase small chain), and glycolysis/gluconeogenesis (fructose-bisphosphate aldolase). Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 168 proteins related to metabolic pathways, 41 proteins related to the biosynthesis of phenylpropanoids, and 36 proteins related to the biosynthesis of plant hormones, the biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid, and photosynthesis in response to B. dothidea. Our findings provide insight into plant-pathogen interactions in resistant and susceptible poplar ecotypes infected with B. dothidea and could assist the development of novel strategies for fighting poplar canker disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.