Abstract

In the present study, proteomics was utilized to evaluate changes in Escherichia coli proteins in response to ofloxacin to understand the mechanism of action of ofloxacin and the mechanisms of ofloxacin resistance in E. coli. Proteomics analysis of E. coli was performed by using liquid chromatography quadrupole time-of-flight mass spectrometry followed by a data processing step using MaxQuant. Functional classification and pathway analysis showed a systematic effect of ofloxacin over E. coli proteome structure. In total, 649 common proteins were identified in the untreated and ofloxacin-treated groups, while 98 proteins were significantly different in the ofloxacin-treated group. Functional classification and pathway analysis showed that ofloxacin has a systematic effect over ribosomal processes, energy pathways (tricarboxylic acid cycle and glycolysis), membrane proteins, microbial targets, and biofilm formation. The results showed that ofloxacin affected many cellular processes and pathways. In addition, proteomic analysis revealed that E. coli develops resistance mechanism with different biological processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.