Abstract
Acute liver failure (ALF) is a severe consequence of abrupt hepatocyte injury and has lethal outcomes. Three toll-like receptor agonists, including polyinosinic-polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS), and cytosine-phosphate-guanine (CpG) DNA, cause acute and severe hepatitis, respectively, in D-galactosamine (D-GalN)-sensitized mice. However, the molecular differences among three ALF models (LPS/D-GalN, poly(I:C)/D-GalN, and CpG DNA/D-GalN), are unclear. Here, tandem mass tag based quantitative proteomic analyses of three ALF mouse models are performed. 52 common differentially expressed proteins (DEPs) are identified, in three ALF groups, compared to the control. Gene ontology analyses show that among the common DEPs, ten proteins are involved in immune system process, and 39 proteins in metabolic process. Among 80,195, and 23 specifically-expressed proteins in poly(I:C)/D-GalN, LPS/D-GalN, and CpG DNA/D-GalN groups, LPS/D-GalN-specific proteins are mostly distributed in the endoplasmic reticulum and more enriched in metabolic pathways, whereas poly (I:C)/D-GalN-specific proteins are mainly in the membrane and CpG DNA/D-GalN-specific proteins are related to the ribosome structural composition. In conclusion, the common and specific DEPs in three ALF mouse models at molecular level are identified; and determined a close-to-complete reference map of mouse liver proteins which will be useful for clinical diagnosis and treatment of liver failure in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.