Abstract

The endothelium of different organs displays a remarkable heterogeneity, although it presents many common functional and morphological features. However, despite our knowledge of heterogeneity among endothelial cells from different sites, the differences between brain microvascular endothelial cells (BMEC) and coronary microvascular endothelial cells (CMEC) are poorly defined. The aim of this study was to investigate whether BMEC are distinct from CMEC at the protein level. Using the proteomic approach, we comparatively analyzed the proteome of cultured BMEC and CMEC. We reproducibly separated over 2000 polypeptides by using two-dimensional electrophoresis (2-DE) at pH range of 3-10. Using PDQuest software to process the 2-DE gel images, forty-seven protein spots were differentially expressed in the two-endothelial cells. Of these, thirty-five proteins are highly expressed in BMEC, whereas twelve proteins are highly expressed in CMEC. Fifteen proteins in BMEC and seven proteins in CMEC were identified with high confidence by matrix-associated laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). Our data suggested that BMEC and CMEC were different in several aspects including cytokine and growth-related molecules, stress-related proteins, metabolic enzymes, signal transduction proteins and others. The identification of a set of proteins preferentially expressed in BMEC and CMEC provided new data on the heterogeneity of the endothelium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.