Abstract

Due to the non-linearity of current-voltage of solar cell model, the conventional methods are incapable to extract the parameters of solar cell with high accuracy. The implicit nonlinear equation describing the single and double diodes solar cell in five and seven parameters is rewritten as optimization problems with constraint functions and it is solved by using a firefly algorithm optimization. The firefly algorithm is a nature-inspired stochastic optimization algorithm, and able to solve modern global optimization for nonlinear and complex system, based on the flashing patterns and behavior of firefly's swarm. Moreover, this paper develops a unique solar cell modelling approach that incorporates search and optimization techniques for the determination of equivalent circuit parameters of RTC France Company mono-crystalline silicon solar cell single and double diodes at 33°C and 1000W/m2 from experimental current-voltage. The statistical errors are used to verify the accuracy of the results. Finally, accuracy of the extracted parameters is verified by comparing the current-voltage curve generated from simulation with those provided by determined experimentally and with different recent algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.