Abstract
Background3,3′-Diindolylmethane (DIM) is known as an agent of natural origin that provides protection against different cancers due to the broad spectrum of its biological activities in vivo. However, this substance has a very poor biodistribution and absorption in animal tissues. This preclinical trial was conducted to evaluate the pharmacokinetics and bioavailability of various DIM formulations in animal model.Materials and methodsThe pharmacokinetic parameters of one crystalline DIM formulation and one liquid DIM formulation (oil solution) compared to non-formulated crystalline DIM (control) were tested in 200 rats. The formulations were orally administered to animals by gavage at doses of 200 mg/kg per DIM (crystalline DIM formulation and non-formulated crystalline DIM) and 0.1 mg/kg per DIM (DIM in oil solution). DIM plasma elimination was measured using HPLC method; after that, the area under the curve (AUC), relative bioavailability, and absolute bioavailability were estimated for two formulations in relation to non-formulated crystalline DIM.Results and conclusionThe highest bioavailability was achieved by administering liquid DIM (oil solution), containing cod liver oil and polysorbate. The level of DIM in rat blood plasma was about fivefold higher, though the 2,000-fold lower dose was administered compared to crystalline DIM forms. The novel pharmacological DIM substance with high bioavailability may be considered as a promising targeted antitumor chemopreventive agent. It could be used to prevent breast and ovarian cancer development in patients with heterozygous inherited and sporadic BRCA1 gene mutations. Further preclinical and clinical trials are needed to prove this concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.