Abstract

The Acer L. (Sapindaceae) is one of the most diverse and widespread genera in the Northern Hemisphere. Section Platanoidea harbours high genetic and morphological diversity and shows the phylogenetic conflict between A. catalpifolium and A. amplum. Chloroplast (cp) genome sequencing is efficient for the enhancement of the understanding of phylogenetic relationships and taxonomic revision. Here, we report complete cp genomes of five species of Acer sect. Platanoidea. The length of Acer sect. Platanoidea cp genomes ranged from 156,262 bp to 157,349 bp and detected the structural variation in the inverted repeats (IRs) boundaries. By conducting a sliding window analysis, we found that five relatively high variable regions (trnH-psbA, psbN-trnD, psaA-ycf3, petA-psbJ and ndhA intron) had a high potential for developing effective genetic markers. Moreover, with an addition of eight plastomes collected from GenBank, we displayed a robust phylogenetic tree of the Acer sect. Platanoidea, with high resolutions for nearly all identified nodes, suggests a promising opportunity to resolve infrasectional relationships of the most species-rich section Platanoidea of Acer.

Highlights

  • Chloroplasts are essential organelles in plant cells for the processes of photosynthesis and carbon fixation [1]

  • Young leaves of five Acer species (A. catalpifolium, A. amplum, A. longipes, A. yanjuechi and A. mono) were collected and dried immediately with silica gel for preservation, for each species we collected the leaves from one healthy plant

  • The nucleotide sequences of the seven Acer sect

Read more

Summary

Introduction

Chloroplasts (cp) are essential organelles in plant cells for the processes of photosynthesis and carbon fixation [1]. They possess uniparental inheritance and their genome has a high conservation structure in most land plants [2]. With the rapid development of next-generation sequencing (NGS) and other methods for obtaining the cp genome sequences, the availability of cp genome sequences has increased dramatically for land plants, offering opportunities for the comprehensive structure comparison, improvement of horticultural plant breeding [5,6] and reconstruction of evolutionary relationships [7,8].

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.