Abstract

One niche of experimental biology that has experienced considerable progress is the neurobiology of learning and memory. A key contributor to such progress has been the widespread use of transgenic and 'knockout' mice to elucidate the mechanisms of identifiable phenotypes of learning and memory. Inbred mouse strains are needed to generate genetically modified mice. However, genetic variations between inbred strains can confound the interpretation of cellular neurophysiological phenotypes of mutant mice. It is known that altered physiological strength of synaptic transmission ('synaptic plasticity') can modify and regulate learning and memory. Characterization of the synaptic phenotypes of inbred mouse strains is needed to identify the most appropriate strains to use for generating mutant mouse models of memory function. More importantly, comparative electrophysiological analyses of inbred mice per se can also shed light on which forms of synaptic plasticity underlie particular types of learning and memory. Many such analyses have focused on synaptic plasticity in the hippocampus because of the critical roles of this brain structure in the formation and consolidation of long-term memories. Comparative electrophysiological data obtained from several inbred mouse strains are reviewed here to highlight the following key notions: (1) synaptic plasticity is influenced by the genetic backgrounds of inbred mice; (2) the plasticity of hippocampal synapses in inbred mice is ;tuned' to particular temporal patterns of activity; (3) long-term potentiation, but not long-term depression, is a cellular correlate of behavioural memory performance in some strains; (4) synaptic phenotyping of inbred mouse strains can identify cellular models of memory impairment that can be used to elucidate mechanisms that may cause specific memory deficits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call