Abstract

Cacodylic acid (hydroxydimethylarsine oxide) was more phytotoxic than monsodium methanearsonate (MSMA), sodium arsenate, or sodium arsenite when foliarly-applied. MSMA was much more effective on dicotyledonous than on monocotyledonous species. Sodium arsenite and arsenate had little effect on grasses. A comparative study of absorption, transport, and metabolism in beans (Phaseolus vulgarisL. ‘Black Valentine’) revealed that cacodylic acid and MSMA were transported about equally from the leaves to the terminal bud and expanding leaves whereas negligible amounts of sodium arsenite and arsenate were translocated. The latter two compounds caused more rapid contact injury to the treated leaves than either organic arsenical. There was no indication that cacodylic acid or MSMA was demethylated to form inorganic arsenicals or reduced to trivalent arsenic compounds. Studies with14C-MSMA indicated that about 40% of the14C and arsenic recovered was bound rapidly to another molecule to form a ninhydrin-positive complex. In small amounts, arsenate combined with some component of plant tissues. Also, arsenite probably was oxidized to arsenate. In beans, root-applied sodium arsenite was more phytotoxic than sodium arsenate and both were much more phytotoxic than cacodylic acid and MSMA. Most differences in phytotoxicity could not be explained by differences in rates of absorption by bean roots. Arsenite caused considerable contact injury to the root system, probably accounting for its relatively great phytotoxicity. Both cacodylic acid and MSMA were more phytotoxic per mole of tissue arsenic when foliarly-applied than when root-applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.