Abstract

Arbuscular mycorrhizal (AM) fungi enhance plant salt tolerance. However, physiological mechanisms of enhanced salt tolerance in leaves and roots of trees rarely have been compared. To reveal the different mechanisms, our study utilized comprehensive analyses of leaves and roots to examine the effects of Funneliformis mosseae on the salinity tolerance of Zelkova serrata. Seedlings of Z. serrata were exposed to four salt levels in a greenhouse with and without F. mosseae inoculation. Treatment comparisons revealed that following F. mosseae inoculation, (1) nutrient deficiency caused by osmotic stress was mitigated by the fungus enhancing nutrient contents (K, Ca, and Mg) in roots and (N, P, K, Ca, and Mg) in leaves, with Ca and K contents being higher in both leaves and roots; (2) mycorrhizas alleviated ion toxicity by maintaining a favorable ion balance (e.g., K+/Na+), and this regulatory effect was higher in leaves than that in roots; and (3) oxidative damage was reduced by an increase in the activities of antioxidant enzymes and accumulation of antioxidant compounds in mycorrhizal plants although the increase differed in leaves and roots. In particular, AM fungus-enhanced catalase activity and reduced glutathione content only occurred in leaves, whereas an enhanced content of reduced ascorbic acid was only noted in roots. Growth, root vitality, leaf photosynthetic pigments, net photosynthetic rate, and dry weight were higher in seedlings with AM fungus inoculation. These results suggest that AM fungus inoculation improved salinity tolerance of Z. serrata, but the physiological mechanisms differed between leaves and roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.