Abstract
BackgroundThe aim of the present study was to use a combined phylogeographic and species distribution modelling approach to compare the glacial histories of two plant species with overlapping distributions, Orthilia secunda (one-sided wintergreen) and Monotropa hypopitys (yellow bird's nest). Phylogeographic analysis was carried out to determine the distribution of genetic variation across the range of each species and to test whether both correspond to the "classic" model of high diversity in the south, with decreasing diversity at higher latitudes, or whether the cold-adapted O. secunda might retain more genetic variation in northern populations. In addition, projected species distributions based on a future climate scenario were modelled to assess how changes in the species ranges might impact on total intraspecific diversity in both cases.ResultsPalaeodistribution modelling and phylogeographic analysis using multiple genetic markers (chloroplast trnS-trnG region, nuclear ITS and microsatellites for O. secunda; chloroplast rps2, nuclear ITS and microsatellites for M. hypopitys) indicated that both species persisted throughout the Last Glacial Maximum in southern refugia. For both species, the majority of the genetic diversity was concentrated in these southerly populations, whereas those in recolonized areas generally exhibited lower levels of diversity, particularly in M. hypopitys. Species distribution modelling based on projected future climate indicated substantial changes in the ranges of both species, with a loss of southern and central populations, and a potential northward expansion for the temperate M. hypopitys.ConclusionsBoth Orthilia secunda and Monotropa hypopitys appear to have persisted through the LGM in Europe in southern refugia. The boreal O. secunda, however, has retained a larger proportion of its genetic diversity in more northerly populations outside these refugial areas than the temperate M. hypopitys. Given that future species distribution modelling suggests northern range shifts and loss of suitable habitat in the southern parts of the species' current distributions, extinction of genetically diverse rear edge populations could have a significant effect in the rangewide intraspecific diversity of both species, but particularly in M. hypopitys.
Highlights
The aim of the present study was to use a combined phylogeographic and species distribution modelling approach to compare the glacial histories of two plant species with overlapping distributions, Orthilia secunda and Monotropa hypopitys
The processes of persistence in southern refugia during glacial maxima followed by northward recolonization have led to a pattern of “southern richness versus northern purity” [21,22,23], where the majority of genetic variation is found in populations that currently occupy previous refugial areas, with a northward decrease in genetic diversity due to progressive founder effects during the recolonization process
The results of the paleodistribution modelling and the patterns of genetic variation revealed by the phylogeographic analyses suggest that both Orthilia secunda and Monotropa hypopitys persisted throughout the LGM in Europe in southern refugia
Summary
The aim of the present study was to use a combined phylogeographic and species distribution modelling approach to compare the glacial histories of two plant species with overlapping distributions, Orthilia secunda (one-sided wintergreen) and Monotropa hypopitys (yellow bird’s nest). As projections of carbon emissions suggest that this period of global warming will not end soon, these range shifts are likely to continue, but where species lack the migratory capacity to track changes in climate and available habitat, population extinctions may become increasingly frequent, at species’ low-latitude range edges [14,15,16,17]. Assuming that species will shift their ranges north in response to global warming, genetically diverse southern edge populations of temperate species may be at the greatest risk of extinction, whereas cold-adapted species that might have persisted in more northerly refugia [24,25,26,27] could conceivably retain a larger proportion of their genetic diversity since this variation may not be concentrated in low latitude populations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.