Abstract

It is paradigmatic in marine species that greater dispersal ability often, but not always, results in greater gene flow and less population structure. Some of the exceptions may be attributable to studies confounded by comparison of species with dissimilar evolutionary histories, i.e. co-occurring species that are not closely related or species that are closely related but allopatric. Investigation of sympatric sister species, in contrast, should allow differences in phylogeographic structure to be attributed reliably to recently derived differences in dispersal ability. Here, using mitochondrial DNA control region sequence, we first confirm that Clevelandia ios and Eucyclogobius newberryi are sympatric sister taxa, then demonstrate considerably shallower phylogeographic structure in C. ios than in E. newberryi. This shallower phylogeographic structure is consistent with the higher dispersal ability of C. ios, which most likely results from the interaction of habitat and life-history differences between the species. We suggest that the paradigm will be investigated most rigorously by similar studies of other sympatric sister species, appended by thorough ecological studies, and by extending this sister-taxon approach to comparative phylogeographic studies of monophyletic clades of sympatric species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call