Abstract

The human α7 nicotinic acetylcholine receptor (nAChR) subunit and its Caenorhabditis elegans homolog, ACR-16, can generate functional recombinant homomeric receptors when expressed in Xenopus laevis oocytes. Both nAChRs express robustly in the presence of the co-injected chaperone, RIC-3, and show striking differences in the actions of a type I positive allosteric modulator (PAM), ivermectin (IVM). Type I PAMs are characterised by an increase in amplitude only of the response to acetylcholine (ACh), whereas type II PAMs exhibit, in addition, changes in time-course/desensitization of the ACh response. The type I PAMs, ivermectin, 5-hydroxyindole (5-HI), NS-1738 and genistein and the type II PAM, PNU-120596, are all active on human α7 but are without PAM activity on ACR-16, where they attenuate the amplitude of the ACh response. We used the published structure of avermectin B1a to generate a model of IVM, which was then docked into the candidate transmembrane allosteric binding site on α7 and ACR-16 in an attempt to gain insights into the observed differences in IVM actions. The new pharmacological findings and computational approaches being developed may inform the design of novel PAM drugs targeting major neurological disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.