Abstract

Neratinib (NER) and pelitinib (PEL) are irreversible tyrosine kinase inhibitors (TKIs) that have been recently employed in cancer treatment. Apigenin (API), among other flavonoids, is known to have antioxidant, anti-proliferative, and carcinogenic effect. API can potentiate the antitumor effect of chemotherapeutic agents and/or alleviate the side effects of many anticancer agents. Since TKIs are mostly metabolized by CYP3A4 enzymes and that API could alter the enzymatic activity, potential drug interactions could be expected following their co-aministration. In the present study, a bioanalytical UPLC–MS/MS method has been developed and validated for the quantification of NER and PEL in rat plasma, using domperidone (DOM) as an internal standard. Sample preparation was carried out using solid phase extraction (SPE) with C18 cartridges with good extraction recovery of not less than 92.42% (NER) and 89.73% (PEL). Chromatographic analysis was performed on a Waters BEH C18 column with a mobile phase composed of acetonitrile and water, (70:30, v/v), each with 0.1% formic acid. Quantitation was performed using multiple reaction monitoring (MRM) of the transitions from protonated precursor ions [M+H]+, at m/z 557.30 (NER), m/z 468.21 (PEL), and at m/z 426.27 (DOM), to selected product ions at m/z 112.05 (NER), m/z 395.22 (PEL), and at m/z 175.18 (DOM). The method was fully validated as per the FDA guidelines over the concentration range of 0.5–200ng/mL with very low lower limit of quantification (LLOQ) of 0.5ng/mL for both NER and PEL. The intra- and inter-day assay precision and accuracy were evaluated for both drugs and the calculated values of percentage relative standards deviations (%RSD) and relative errors (%Er) were within the acceptable limits (<15%) for concentrations other than LLOQ and 20% for LLOQ. The applicability of the method was extended to study the possibility of drug interactions following the oral co-administration of NER/PEL with API. Thus, this study could be readily applied in therapeutic drug monitoring (TDM) of cancerous patients receiving such drug combinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call