Abstract
In general, the majority of fiber-reinforced polymer composites (FRPs) used in structural applications comprise carbon, glass, and aramid fibers reinforced with epoxy resin, with the occasional utilization of polyester and vinyl ester resins. This study aims to assess the feasibility of utilizing recyclable and sustainable materials to create a resilient composite suitable for structural applications, particularly in scenarios involving low-velocity and high-velocity impact (LVI, HVI) loading. The paper presents a comparative analysis of the performance of E-glass, aramid, and eco-friendly basalt-reinforcing fabrics as reinforcement fibers in both thermosetting (epoxy) and recyclable thermoplastic (Elium©) resins. Given the limited research on Elium composites, especially those incorporating basalt-reinforcing fiber, there is an urgent need to expand the databases of fundamental mechanical properties for these diverse composites. This necessity is exacerbated by the scarcity of the literature regarding their performance under low- and high-velocity impact loadings. The results of this study will demonstrate the potential of basalt-reinforced Elium composite as an effective recyclable and environmentally friendly structural material system for both static and dynamic loading conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.