Abstract
The expected claim frequency and the expected claim severity are used in predictive modelling motor insurance claims. There are two categories of claims were considered, namely, third party property damage and own damage. Datasets from the year 2001 to 2003 are used to develop the predictive model. This paper proposes three different methods, namely, regression analysis, back propagation neural network and adaptive neuro fuzzy inference system to model claim frequency and claim severity as the two important elements in modelling the motor insurance claims. The experimental results showed that the back propagation neural network model produces more accurate as compared to regression analysis and adaptive neuro fuzzy inference system in predicting the claim frequency and claim severity. For both OD and TPPD claim, the results have shown the lowest MAPE with 0.2191 and 0.6515, and 0.2169 and 0.326, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.