Abstract

The results are reported of an investigation of the effects of cascading air-source heat pumps on performance for hydronic residential systems. Three heat pump systems are modeled as single-stage, single-refrigerant cascaded, and two-refrigerant cascaded. Energy and exergy analyses are performed, and a comparative performance analysis is carried out, considering energy efficiency, refrigerant mass flow rates, evaporator pressure, exergy efficiency, and several other criteria. Three sets of source and supply temperatures, representing different climates and different water sink systems (low, medium and high temperature), are used to provide more comprehensive behavior assessments of the systems. Additionally, the optimum intermediate pressure of the cascaded systems for all working temperature pairs is found for the highest energetic COP and exergetic COP. Compared to a single stage heat pump, cascading improves the overall energy efficiency of the system for low-ambient temperatures, but not for high-ambient temperatures. Although this improvement is minor, the exergetic COP is increased by 67% for the single refrigerant cascaded system and 70% for a two-refrigerant cascaded system, at low ambient temperatures. Using refrigerant R404A in the low-pressure cycle marginally improves the energetic COP of the cascaded heat pump, but increases the evaporator working pressure, making it possible to use smaller compressors. However, the overall refrigerant mass flow rates increase with cascading. The two cascaded systems have higher exergy destructions (by almost four times) compared to the single stage system, mainly due to having more components, including an intermediate heat exchanger. Also, cascading shifts the major exergy destruction centers from the compressors and expansion valves to the evaporators. A comparison of cascaded and single-stage heat pumps shows that the exergy analysis results exhibit a different trend than energy analysis results with source and supply temperatures, highlighting the advantages of exergy methods in determining if cascading is appropriate for a given application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.