Abstract
The recent study investigates and compares the energy and exergy performances of solar dish assisted supercritical carbon dioxide re-compression with reheat Brayton cycle. Parabolic dish solar collector with cavity receiver, working on three different thermal oil based nanofluids (Al2O3, CuO & TiO2), is integrated with supercritical carbon dioxide Brayton cycle for power production. A comprehensive thermodynamic analysis and simulations are carried out in engineering equation solver to examine the overall system performance by varying certain operating parameters. These parameters are the solar radiation intensity, wind speed, ambient and inlet temperature of the fluid, mass flow rate in the receiver tube and nano particles percentage. The results demonstrate that Al2O3 oil based nanofluid has the highest overall energy and exergy efficiencies, almost 33.73% and 36.27%, respectively, and is almost 0.27% more than TiO2/oil nanofluid and 0.91% higher than CuO/oil based nanofluid. Effect of the wind velocity on receiver efficiency is also investigated. By increasing the percentage of nano particles, convective heat transfer coefficient of the fluid in the receiver tube also increases. Turbine inlet temperature and pressure ratio is varied to investigate the thermal and exergy efficiencies of the supercritical recompression Brayton cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.