Abstract

PurposePrivacy and security of personal data is the prime concern in any communication. Security algorithms play a crucial role in privacy preserving and are used extensively. Therefore, these algorithms need to be effective as well as energy-efficient. Advanced Encryption Standards (AES) is one of the efficient security algorithms. The principal purpose of this research is to design Energy efficient implementation of AES, as it is one of the important aspects for a step toward green computing.Design/methodology/approachThis paper presents a low voltage complementary metal oxide semiconductor (LVCMOS) based energy efficient architecture for AES encryption algorithm on Field Programmable Gate Array (FPGA) platform. The experiments are performed for five different FPGAs at different input/output standards of LVCMOS. Experiments are performed separately at two frequencies (default and 1.6 GHz).FindingsThe comparative study of total on-chip power consumption for different frequency suggested that LVCMOS12 performed best for all the FPGAs. Also, Kintex-7 Low Voltage was found to be the best performing FPGA. At 1.6 GHz frequency, the authors observed 55% less on-chip power consumption when switched from Artix-7 with LVCMOS33 (maximum power consuming combination) to Kintex-7 Low Voltage with LVCMOS12. Mathematical models are developed for the proposed design.Originality/valueThe green implementation of AES algorithm based on LVCMOS standards has not been explored yet by researchers. The energy efficient implementation of AES will certainly be beneficial for society as it will consume less power and dissipate lesser heat to environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call