Abstract
Abstract Nano-titanium dioxide and nano-silver combined with polystyrene granules to form a nano-composite film. Migration assess were performed by using food simulants 3% acetic acid (indicative acidic food) and 95% ethanol (indicative fatty food) at 40°C on different times of 2, 4, 6, 8 and 10 days. It was found that nanoparticle migration rate in acidic food was higher than fatty food. Diffusion coefficients of nanoparticles into simulants were estimated by inverse simulation of the migration process using finite-element method and experimental data of varied concentration. Simulation revealed an acceptable consistency between experimental data and predicted values. The numerical results indicated that the greatest diffusion coefficient was obtained by nano-titanium (2.8E-10 to 4.1E-9 m2 s−1) in the 3% acetic acid. Results of concentration distribution confirmed a higher release rate and more uniformed distribution of nanoparticles for nano-titanium in the 3% acetic acid. It also found that in the migration process the diffusion coefficient is more important than the amount of nanoparticles concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.