Abstract

A comparative and numerical study on the formability of a sheet formed into a V-shaped die using a conventional stamping operation and an electromagnetic forming (EMF) process was performed. To evaluate the damage evolution and failure prediction using a finite-element method (FEM), the Gurson-Tvergaard-Needleman plasticity material model was employed in the numerical simulation. The impact of the sheet with the die generates a complex stress state during the EMF process. Damage suppression due to the tool-sheet interaction may be one of the main factors contributing to the increased formability in the EMF process compared to the conventional forming operation. In addition, a high level of kinetic energy produces high strain-rate constitutive and inertial effects, which delay the onset of necking and may also be responsible for the increased formability using EMF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call