Abstract

Purpose3,4-Methylenedioxypyrovalerone (3,4-MDPV) is a prevalent member of α-pyrrolidinophenones, a group of new psychoactive substances, known for its strong psychostimulant effect resulting from potent stimulation of dopamine (DA) circuitry in the brain. As 3,4-MDPV and its derivatives are successively being scheduled, each year novel analogs appear on the market. This study aimed at examination and direct comparison of psychostimulant properties of structural isomer of 3,4-MDPV, namely 2,3-MDPV along with a model α-pyrrolidinophenone, pyrovalerone.MethodsOpen field spontaneous locomotor activity of mice was assessed as a measure of psychostimulant potency. To evaluate the in vivo pharmacological properties of the drugs, extracellular levels of DA and serotonin (5-HT) in the mouse striatum were measured using an in vivo microdialysis technique followed by high-performance liquid chromatography with electrochemical detection. Involvement of dopaminergic system in the behavioral effects of the tested α-pyrrolidinophenones was examined by pre-treatment with a selective D1-DA receptor antagonist, SCH 23390, before measurement of locomotor activity in response to the drugs.Results3,4-MDPV, 2,3-MDPV and pyrovalerone produced time- and dose-dependent stimulation of locomotor activity, with 3,4-MDPV being more potent than the other two compounds. Observed locomotor stimulation was mediated by elevated DA-ergic neurotransmission, as all compounds caused a significant increase of extracellular DA levels in the striatum, with 3,4-MDPV being the most potent, and psychostimulant effects were abolished by SCH 23390. Interestingly, the tested pyrovalerones caused in vivo elevation of extracellular 5-HT levels, which contrasted with their in vitro pharmacologic properties.ConclusionsPyrovalerone, 2,3-MDPV and 3,4-MDPV produced psychostimulant effects mediated by stimulation of dopaminergic neurotransmission. Additionally, all tested compounds elevated extracellular levels of 5-HT in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.