Abstract

In this work, we report on Monte Carlo simulations to study the capability to generate Gunn oscillations of diodes based on InP and GaN with around 1 μm active region length. We compare the power spectral density of current sequences in diodes with and without notch for different lengths and two doping profiles. It is found that InP structures provide 400 GHz current oscillations for the fundamental harmonic in structures without notch and around 140 GHz in notched diodes. On the other hand, GaN diodes can operate up to 300 GHz for the fundamental harmonic, and when the notch is effective, a larger number of harmonics, reaching the Terahertz range, with higher spectral purity than in InP diodes are generated. Therefore, GaN-based diodes offer a high power alternative for sub-millimeter wave Gunn oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call