Abstract

The ammonia/chlorine oxidation process can greatly degrade PPCPs in water. However, its effect on molecular transformations of natural organic matter (NOM) and effluent organic matter (EfOM) are still poorly understood. In this study, molecular transformations of NOM and EfOM occurring during ammonia/chlorine were explored and compared with those occurred during chlorination, using spectroscopy and mass spectrometry. Phenolic and highly unsaturated aliphatic compounds together with aliphatic compounds were found to be predominant in both NOM and EfOM samples, all of which were significantly degraded after two processes. The ammonia/chlorine process led to greater decreases in the molecular weights of such components but lower reductions in aromaticity. Compared with chlorination, ammonia/chlorine was found to be more likely to degrade compounds while remaining fluorophores or chromophores. The CH(N)O(S) precursors were found to be similar for both processes but their products were quite different. The CH(N)O(S) precursors that only found in ammonia/chlorine had higher molecular weights and greater degrees of oxidation but lower degrees of saturation. In contrast, the unique CH(N)O(S) products that only found in ammonia/chlorine exhibited lower molecular weights and lower degrees of oxidation degrees together with higher degrees of saturation. Lower total abundance of chlorinated byproducts was found by ammonia/chlorine compared with chlorination, although the former process provided a richer diversity. In all water samples, chlorinated byproducts were mainly generated by substitution reactions during ammonia/chlorine and chlorination. Overall, the findings of this study could provide new insights into the transformations of NOM and EfOM induced by ammonia/chlorine and chlorination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.