Abstract

BackgroundSoils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. In this study, we used culture dependent and independent methods to assess the community structure and diversity of chemolithoautotrophs in agricultural and coastal barren saline soils (low and high salinity). We studied the composition and distribution of chemolithoautotrophs by means of functional marker gene cbbL encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a phylogenetic marker 16S rRNA gene. The cbbL form IA and IC genes associated with carbon fixation were analyzed to gain insight into metabolic potential of chemolithoautotrophs in three soil types of coastal ecosystems which had a very different salt load and sulphur content.ResultsIn cbbL libraries, the cbbL form IA was retrieved only from high saline soil whereas form IC was found in all three soil types. The form IC cbbL was also amplified from bacterial isolates obtained from all soil types. A number of novel monophyletic lineages affiliated with form IA and IC phylogenetic trees were found. These were distantly related to the known cbbL sequences from agroecosystem, volcanic ashes and marine environments. In 16S rRNA clone libraries, the agricultural soil was dominated by chemolithoautotrophs (Betaproteobacteria) whereas photoautotrophic Chloroflexi and sulphide oxidizers dominated saline ecosystems. Environmental specificity was apparently visible at both higher taxonomic levels (phylum) and lower taxonomic levels (genus and species). The differentiation in community structure and diversity in three soil ecosystems was supported by LIBSHUFF (P = 0.001) and UniFrac.ConclusionThis study may provide fundamentally new insights into the role of chemolithoautotrophic and photoautotrophic bacterial diversity in biochemical carbon cycling in barren saline soils. The bacterial communities varied greatly among the three sites, probably because of differences in salinity, carbon and sulphur contents. The cbbL form IA-containing sulphide-oxidizing chemolithotrophs were found only in high saline soil clone library, thus giving the indication of sulphide availability in this soil ecosystem. This is the first comparative study of the community structure and diversity of chemolithoautotrophic bacteria in coastal agricultural and saline barren soils using functional (cbbL) and phylogenetic (16S rDNA) marker genes.

Highlights

  • Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil

  • Total carbon level varied with high content in agricultural soil (2.65%) and low content in saline soils Saline soil 1 (SS1) (1.27%) and Saline soil 2 (SS2) (1.38%)

  • A comparison of sequences from each site revealed that the libraries displayed 90-93% similarity with each other. This was well supported by weighted UniFrac environmental clustering analysis which indicated that the bacterial communities within sites were not significantly differentiated (UniFrac P = 0.5 for agricultural soil (AS), 0.9 for SS1 and 0.9 for SS2) in both cbbL and 16S rRNA clone libraries

Read more

Summary

Introduction

Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. Chemolithoautotrophic soil microorganisms contribute significantly in sequestration of the green house gas CO2 which helps in climate sustainability and assimilate CO2 mainly by Calvin-Benson-Bassham (CBB) pathway. Some chemolithotrophs such as Epsilonproteobacteria have been reported to use the reductive tricarboxylic acid cycle [2]. Form I RuBisCO found in higher plants, algae, Cyanobacteria and chemolithoautotrophs, is by far the most abundant enzyme in the world [4]. It is a bifunctional enzyme capable of fixing either CO2 or O2. Form III and IV are referred as RuBisCO like proteins

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call