Abstract

A comparative modelling exercise involving several independent teams from the DECOVALEX-2015 project is presented in this paper. The exercise is based on various laboratory experiments that have been carried out in the framework of a French research programme called SEALEX and conducted by the IRSN. The programme focuses on the long-term performance of swelling clay-based sealing systems that provide an important contribution to the safety of underground nuclear waste disposal facilities. A number of materials are being considered in the sealing systems; the current work focuses on a 70/30 MX80 bentonite–sand mixture compacted at dry densities between 1.67 and 1.97 Mg/m3. The improved understanding of the full set of hydro-mechanical processes affecting the behaviour of an in situ sealing system requires both experiments ranging from small-scale laboratory tests to full-scale field emplacement studies and coupled hydro-mechanical models that are able to explain the observations in the experiments. The approach was to build models of increasing complexity starting for the simplest laboratory experiments and building towards the full-scale in situ experiments. Following this approach, two sets of small-scale laboratory experiments have been performed and modelled. The first set of experiments involves characterizing the hydro-mechanical behaviour of the bentonite–sand mixture by means of (1) water retention tests under both constant volume and free swell conditions, (2) infiltration test under constant volume condition, and (3) swelling and compression tests under suction control conditions. The second, more complex, experiment is a 1/10th scale mock-up of a larger-scale in situ experiment. Modelling of the full-scale experiment is described in a companion paper. A number of independent teams have worked towards modelling these experiments using different conceptual models, codes, and input parameters. Their results are compared and discussed. This exercise has enabled an improved modelling of the bentonite–sand mixture behaviour, in particular accounting for the dependence of its retention curve on the dry density. Moreover, it has shown the importance of the technological voids on the short-term behaviour of the sealing system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.