Abstract

Present study investigates a comparative study of lower and higher-order strain gradient plasticity (SGP) theories involving the size-dependent micromechanically flexural behaviors of crystalline thin plates. The investigation includes the Mechanism-Based and the Chen–Wang SGP models established on the Taylor dislocation hardening by evoking the statistically stored dislocations and geometrically necessary dislocations. In addition, these models are conjugated with a multiple plastic work-hardening law proposed for the microstructural applications of the SGP. An analytical approach based on energy minimizing method is used for obtaining deflection values in terms of the length scale, exponent of the work-hardening and the tangential module. The obtained results indicate a meaningful dependence of the deflections to the length scale, plastic work hardening and other parameters as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.