Abstract

A theoretical analysis was developed to predict molecular hybridization rates for microarrays where samples flow through microfluidic channels and for conventional microarrays where samples remain stationary during hybridization. The theory was validated by using a multiplexed microfluidic microarray where eight samples were hybridized simultaneously against eight probes using 60-mer DNA strands. Mass transfer coefficients ranged over three orders of magnitude where either kinetic reaction rates or molecular diffusion rates controlled overall hybridization rates. Probes were printed using microfluidic channels and also conventional spotting techniques. Consistent with the theoretical model, the microfluidic microarray demonstrated the ability to print DNA probes in less than 1 min and to detect 10-pM target concentrations with hybridization times in less than 5 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.