Abstract

Generally, a teleostean group possesses only one type or a set of similar mitochondrial gene arrangements. However, a new type of gene arrangement has been identified in the mitochondrial genomes (mitogenomes) of Moenkhausia. Here, three newly sequenced complete mitogenomes of tetras (Characidae: Moenkhausia) are presented (M. costae, M. pittieri, and M. sanctaefilomenae). The three mitogenomes had a classical circular structure, with total lengths ranging from 15,811 to 18,435 bp. Base composition analysis indicated that the sequences were biased toward adenine (A) and thymine (T), with A + T content of 54.63% in M. costae, 58.47% in M. pittieri, and 59.98% in M. sanctaefilomenae. The gene order and organization of M. sanctaefilomenae differed from those of typical teleostean mitogenomes. The genes tRNA-Ile, tRNA-Gln, and tRNA-Pro were translocated between tRNA-Trp and tRNA-Asn. One extra tRNA-Met and an extra CR were also discovered in the mitogenome. BI and ML analyses based on sequences of 38 different mitogenomes showed that M. costae and M. pittieri were classified together, and M. sanctaefilomenae was slightly further from other fish of the same genus. These results provide insight into the gene arrangement features of Characidae mitogenomes and lay the foundation for further phylogenetic studies on Characidae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call