Abstract

The family Channidae, members of which are commonly known as snakehead fish, includes 53 Channa species and three Parachanna species. In this study, we characterized mitochondrial genomes (mitogenomes) of five Channa species (C. andrao, C. bleheri, C. ornatipinnis, C. pulchra, and C. stewartii) for the first time. We compared the mitogenomes with the mitogenomes of 11 other Channidae fish. The newly sequenced mitogenomes were 16,714 – 16,895 bp in length and contained 37 typical genes [13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs)]. Positive AT-skews and negative GC-skews were found in the mitogenomes of Channidae. Most PCGs started with the conventional start codon, ATN; however, the sequence of the stop codon was variable. There was no essential difference in relative synonymous codon usage (RSCU) among the Channidae mitogenomes. The fastest-evolving gene atp8 and slowest-evolving gene cox1 were identified using Ka/Ks and pairwise relative genetic distance (p-distance). The displacement loop (D-loop) regions showed great variability, which affected the size of Channa mitogenomes. One origin of replication on the light strand (OL) region was found between trnN and trnC in the mitogenomes of Channidae. Phylogenetic analysis revealed three new sister pairs (C. andrao + C. bleheri, C. ornatipinnis + C. pulchra, and C. stewartii + C. gachua). Phylogenetic relationships established between the five Channa species based on mitogenomes were also supported by their morphological characteristics and geographical distribution. The novel information we obtained about these mitogenomes will contribute to elucidating the complex relationships among Channa species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call