Abstract

Declines in the survival of steelhead (Oncorhynchus mykiss) populations in protected waters of Washington and British Columbia have drawn attention to the need for more information on migratory patterns and losses in river, estuary, and nearshore habitats. Accordingly, acoustic telemetry was used to quantify movements by wild and hatchery steelhead smolts released from 2006 to 2009 in the Green River, and tracked through Puget Sound, Washington. Survival varied by release group and migration segment but overall survival rates from release to the Strait of Juan de Fuca were 9.7 % for wild and 3.6 % for hatchery fish. These rates are low relative to similar studies on steelhead. Survival was higher for wild fish along all migration segments than hatchery-origin fish; the greatest loss for both groups coincided with the slowest travel rates as fish first entered the estuary and as they exited Puget Sound. Wild fish travelled faster than hatchery fish in the river (15.1 vs. 4.4 km/d) with the fastest travel in the lower river (41 vs. 20.2 km/d) and slowest immediately after release (3.7 vs. 2.4 km/d). The travel rates of wild and hatchery fish became progressively more similar over time: 15.4 vs. 10.6 km/d in the estuary, and 10.3 vs. 9.3 km/d in nearshore areas. Movement was primarily nocturnal in the river, nearly equal between day and night in the upper estuary, and predominately diurnal in the lower estuary and nearshore waters, with no difference between wild and hatchery fish. The migration in marine water showed an early offshore movement and a strong northward and westward orientation, and all fish exited the Strait of Juan de Fuca rather than the Strait of Georgia. The findings support research suggesting that declines in wild and hatchery steelhead populations may be caused primarily by factors in the early marine period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.