Abstract
Simple SummaryDifferent breeds of pigs vary greatly in their propensity for adiposity. The gut microbiome plays a crucial role in shaping host physiological responses. However, it remains unclear how the gut microbiota influences host growth, in particular adipogenesis. This study aimed to compare microbial profiles in the colons of two pig breeds.Sixteen 35-day-old piglets, including eight Large White (LW) piglets (a lean-type pig breed) and eight Ningxiang (NX) piglets (a fatty-type Chinese Indigenous pig breed), were fed the same diet for 105 days. NX pigs had higher intramuscular fat content than LW pigs (p < 0.05). According to 16S rRNA gene sequencing, the relative abundances of the genera Ruminococcaceae_NK4A214_group, Parabacteroides, Christensenellaaceae_R-7_group and Ruminiclostridium were higher, whereas the abundances of Prevotellaceae_NK3B31_group, Prevotella, Subdoligranulum and Faecalibacterium were lower, in the colon of NX pigs compared to that of LW pigs. Nonmetric multidimensional scaling analysis revealed that the microbiota of the two pig breeds clustered separately along the principal coordinate axis. Furthermore, functional prediction of the bacterial communities suggested higher fatty acid biosynthesis in NX pigs. NX pigs also exhibited lower concentrations of total short-chain fatty acids, propionate and butyrate in the colon (p < 0.05). These findings suggest that NX pigs exhibited higher intramuscular fat content and backfat thickness than LW pigs. The bacterial communities in the colon of NX pigs were also more diverse than those in the colon of LW pigs, which might be used as a potential metabolomics mechanism to research different breeds of pigs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.