Abstract

BackgroundLittle is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome.ResultsNovel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90%) to two plasmids (pTRACA10 and pTRACA22) were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA) addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria), but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division.ConclusionsThe application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In particular the increased relative abundance and broad phylogenetic distribution was identified for a putative RelBE toxin/antitoxin addiction module, a putative phosphohydrolase/phosphoesterase, and an ORF of unknown function. Our analysis also indicates that some plasmids or plasmid families are present in the gut microbiomes of geographically isolated human hosts with a broad global distribution (America, Japan and Europe), and are potentially unique to the human gut microbiome. Further investigation of the plasmid population associated with the human gut is likely to provide important insights into the development, functioning and evolution of the human gut microbiota.

Highlights

  • Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome

  • (MGE) associated with the human gut microbiota will reflect the co-evolution of host and microbe in this community, with functions encoded by plasmids and other mobile genetic elements (MGE) shaped according to key environmental stresses, and host-microbe interactions important to life in the human gut [12,13]

  • Genes assigned putative functions in replication and mobilization were identified on all plasmids along with open reading frames (ORFs) of unknown function, many of which exhibited no significant homology to sequences present in the databases (Fig 1, Table S1 in additional file 1)

Read more

Summary

Introduction

Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. The human gut harbours a complex microbial ecosystem which may encode ~100 times as many genes as the human genome and reaches a population density of 1013-1014 cells in the distal colon [1,2,3,4,5]. This ecosystem is composed predominantly of bacteria belonging to the Firmicutes (mainly Clostridia and Eubacteria), and Bacteroidetes (mainly Bacteroides) [2,6], and it is estimated that the majority of species comprising this community (~80%) remain uncultured [3,6]. The transfer of plasmids and transposons between diverse and disparate members of the mammalian gut microbiota has been demonstrated both in vitro and in vivo [17,23,24,25]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call