Abstract

The engineered Saccharomyces cerevisiae strains with ARO4K229L-overexpression, PHA2-downregulation and ARO10/PDC5-knockouts, were previously shown to have enhanced accumulation of naringenin. To understand the mechanism behind this, comparative metabolomic analysis was performed, to gain a global overview of the metabolic regulation. As a result, 20 important metabolites were found to be significantly altered. Specifically, the overexpression of ARO4K229L resulted in a decrease in cytoplasmic amino acids production and an increase in NADPH levels. This indicated that there was a downregulation of the glycolysis pathway, combined with an upregulation in the PPP pathway. In the PHA2-down regulated strain, metabolic changes were mainly confined to the flavonoid biosynthetic pathway. In the case of the ARO10/PDC5 knockout strain, significantly improved ATP levels and upregulation in the TCA cycle were observed. These results provided new evidence for the respiration inhibition of aromatic alcohol at the metabolic level, as a result of in vivo genetic engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.