Abstract

BackgroundPolyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. However, limited metabolic and molecular information related to tetraploidization is currently available at a systemic biological level. This study aimed to evaluate the occurrence and extent of metabolic and transcriptional changes induced by tetraploidization in Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka), which is a special citrus germplasm native to China and widely used as an iron deficiency tolerant citrus rootstock.ResultsDoubled diploid Ziyang xiangcheng has typical morphological and anatomical features such as shorter plant height, larger and thicker leaves, bigger stomata and lower stomatal density, compared to its diploid parent. GC-MS (Gas chromatography coupled to mass spectrometry) analysis revealed that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves; many stress-related metabolites such as sucrose, proline and γ-aminobutyric acid (GABA) was remarkably up-regulated in doubled diploid. However, LC-QTOF-MS (Liquid chromatography quadrupole time-of-flight mass spectrometry) analysis demonstrated that tetraploidization has an inhibition effect on the accumulation of secondary metabolites in leaves; all the 33 flavones were down-regulated while all the 6 flavanones were up-regulated in 4x. By RNA-seq analysis, only 212 genes (0.8% of detected genes) are found significantly differentially expressed between 2x and 4x leaves. Notably, those genes were highly related to stress-response functions, including responses to salt stress, water and abscisic acid. Interestingly, the transcriptional divergence could not explain the metabolic changes, probably due to post-transcriptional regulation.ConclusionTaken together, tetraploidization induced considerable changes in leaf primary and secondary metabolite accumulation in Ziyang xiangcheng. However, the effect of tetraploidization on transcriptome is limited. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0450-4) contains supplementary material, which is available to authorized users.

Highlights

  • Polyploidy has often been considered to confer plants a better adaptation to environmental stresses

  • Our results suggest that tetraploidization has multi-level effects on Ziyang xiangcheng

  • Relatively small transcriptome alterations were induced by tetraploidization

Read more

Summary

Introduction

Polyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. The first comes from doubling a diploid genome. The latter arises from the combination of two or more sets of divergent genomes [6,7]. Polyploidy cultivars are prevalent in fruit plants, such as banana (triploid), grape (tetraploid), kiwifruit and persimmon (hexaploid), strawberry (octaploid). Phenotypic variations caused by polyploidization possess the potential to improve agricultural productivity and efficiency, especially in increasing biomass and stress tolerance

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.