Abstract

Parallel genetic analysis of animal and human genetic diseases can facilitate the identification and characterization of the causative gene defects. For example, canine X-linked severe combined immunodeficiency (SCID) is characterized by clinical, pathological, and immunological manifestations similar to the most common form of human SCID. To derive a canine syntenic map including genes that in humans are located in proximal Xq, near human X-linked SCID, poly(TG) polymorphisms were identified at the canine phosphoglycerate kinase (PGK) and choroideremia (CHM) loci. These plus a polymorphic poly(CAG) sequence in exon 1 of the canine androgen receptor gene (AR) were used to genotype members of the colony informative for X-linked SCID. No recombinations among SCIDX1, AR, PGK, or CHM were observed. Fluorescence in situ hybridization localized PGK and CHM to proximal Xq in the dog, in the same chromosomal location occupied by the human genes. Somatic cell hybrid analysis and methylation differences at AR demonstrated that female dogs carrying X-linked SCID have the same lymphocyte-limited skewed X-chromosome inactivation patterns as human carriers. These genetic and phenotypic findings provide evidence that mutations in the same gene, now identified as the gamma chain of the IL-2 receptor, cause canine and human X-linked SCID. This approach is an efficient method for comparative gene mapping and disease identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.