Abstract

Variations in the composition and level of phospholipids (PLs) in yeast cells during industrial ethanol fermentation processes were analyzed. A comparative lipidomic method was used to investigate the changes in total cellular PLs during continuous and fed-batch/batch processes. The phospholipid metabolism in yeast changed during both processes, mainly due to the presence of longchain poly unsaturated fatty acids (PUFA) that contained phosphatidyglycerol (PG), phosphatidylethanolamine (PE) and phosphatidylserine (PS). The complexity of the media affected the growth of the yeast and the membrane composition. Yeast incorporated lots of exogenous saturated and PUFAs from the feedstock during the fermentations. During the continuous fermentation, there was an increase in PLs with shorter chains as the fermentation progressed and early in process there were more longchains. During the fed-batch/batch process, the PG species increased as the fermentation progressed. This is probably due to an inositol deficiency in the earlier part of the fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.