Abstract
Carbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots. These routes were: (1) production of hydrochar, via hydrothermal treatment of carbon precursors, and its alkaline-peroxide treatment into high-yield carbon dots; (2) thermal treatment of carbon precursors mixed in a eutectic mixture of salts. Results show that the first synthesis route is associated with the lowest environmental impacts. This is attributed to the absence of the mixture of salts in the first synthesis route, which offsets its higher electricity consumption. Sensitivity analysis showed that the most critical parameter in the different synthetic strategies is the identity of the carbon precursor, with electricity being also relevant for the first synthesis route. Nevertheless, the use of some carbon precursors (as citric acid) with higher associated environmental impacts may be justified by their beneficial role in increasing the luminescent performance of carbon dots. Thus, the first synthesis route is indicated to be the most environmental benign and should be used as a basis in future studies aimed to the cleaner and high-yield production of carbon dots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.