Abstract

BackgroundRice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops. To identify genes and pathways involved in the tolerant response to dehydration, a powerful approach consists in the genome-wide analysis of stress-induced expression changes by comparing drought-tolerant and drought-sensitive genotypes.ResultsThe physiological response to osmotic stress of 17 japonica rice genotypes was evaluated. A clear differentiation of the most tolerant and the most sensitive phenotypes was evident, especially after 24 and 48 h of treatment. Two genotypes, which were characterized by a contrasting response (tolerance/sensitivity) to the imposed stress, were selected. A parallel transcriptomic analysis was performed on roots and leaves of these two genotypes at 3 and 24 h of stress treatment. RNA-Sequencing data showed that the tolerant genotype Eurosis and the sensitive genotype Loto mainly differed in the early response to osmotic stress in roots. In particular, the tolerant genotype was characterized by a prompt regulation of genes related to chromatin, cytoskeleton and transmembrane transporters. Moreover, a differential expression of transcription factor-encoding genes, genes involved in hormone-mediate signalling and genes involved in the biosynthesis of lignin was observed between the two genotypes.ConclusionsOur results provide a transcriptomic characterization of the osmotic stress response in rice and identify several genes that may be important players in the tolerant response.Electronic supplementary materialThe online version of this article (doi:10.1186/s12284-016-0098-1) contains supplementary material, which is available to authorized users.

Highlights

  • Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops

  • Physiological Response to Osmotic Stress To evaluate the physiological response to osmotic stress of 17 japonica rice cultivars, which are currently listed in the Italian National Register, the leaf relative water content (RWC; Table 1) and the leaf electrolyte leakage (EL; Table 2) of plants subjected to 0, 3, 24 and 48 h of 20 % polyethylene glycol (PEG) treatment were measured

  • The analysis showed that some pathways related to cell division, stress response, hormones, regulation, enzyme families and transport were differently regulated between the 2 cultivars, confirming the major results of the Gene ontology (GO) enrichment analysis (Fig. 7)

Read more

Summary

Introduction

Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops. A powerful approach, which is increasingly being used to discriminate between drought tolerance-related genes and drought-responsive genes, is to perform genome-wide analyses of stress-induced expression changes by comparing drought-tolerant and drought-sensitive genotypes, rather than performing gene expression experiments on single genotypes (Moumeni et al 2011; Utsumi et al 2012; Guimaraes et al 2012; Degenkolbe et al 2013) This approach has allowed for the identification of genes with a positive function in enhancing drought tolerance and is potentially useful for the development of molecular markers to accelerate breeding programs

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.