Abstract
Hydrogels are highly versatile and widely applicable materials within various scientific, technological, and food sectors. Alginate and gelatin hydrogels, along with their crafted variations, are possibly the most common ones. However, the ionic crosslinking of alginate-Ca++ is a different gelation mechanism than the physical crosslinking of gelatin. In this work, we prepare alginate-Ca++ hydrogels using individual layer gelation and experimentally evaluate LAOS rheological behavior. We apply shear-stress decomposition using the MITlaos software and obtain the elastic and viscous contributions within the nonlinear response of the individual alginate-Ca++ layer. We compare these results with the nonlinear responses of the gelatin-alginate ex situ individual layer. The strain-sweep patterns are similar, with loss modulus overshoot. The applied shear can destroy the larger-scale structural units (agglomerate/aggregates), resulting in analogous patterns. However, the critical strain points are different. Based on the shear-thickening ratio T of the LAOS analysis, it can be assumed that the common feature of ex situ preparation, i.e., gelation as individual layers, provides a matching bulk microstructure, as the hydrogels differ significantly at a molecular-binding level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.