Abstract

The time-course kinetics of the cytochrome P-450-catalyzed dealkylations of the exogenous compounds benzphetamine, ethylmorphine, codeine, and 7-ethoxycoumarin were compared to the hydroxylation of the endogenous compound testosterone. Using liver microsomes from phenobarbital-induced rats, the time course of the demethylations of ethylmorphine, codeine, and especially benzphetamine was characterized by a fast initial phase of enzymatic activity and then a steady decline in the rate throughout the remainder of the reaction. In contrast, under the same experimental conditions, both the dealkylation of 7-ethoxycoumarin and the hydroxylation of testosterone showed no initial fast phase of activity and a constant rate of product formation for most of the remainder of the time course. The difference also held for the carbon monoxide inhibition studies in which the degree of inhibition of the demethylation reactions by a variety of CO:O 2 mixtures was time dependent, in contrast to the constant, time-independent degree of CO inhibition of the other two reactions. The kinetics of the demethylation reactions could not be explained by enzyme destruction, back reaction, or product adduct formation and were further confirmed by measurements of the rate of O 2 utilization and NADPH oxidation. The complexity of the demethylation reaction should be taken into consideration in any detailed studies of the monooxygenation reaction system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call