Abstract

Although the Venus flytrap (Dionaea muscipula) can be considered as one of the most extensively investigated carnivorous plants, knowledge is still scarce about diversity of the snap-trap motion, the functionality of snap traps under varying environmental conditions, and their opening motion. By conducting simple snap-trap closure experiments in air and under water, we present striking evidence that adult Dionaea snaps similarly fast in aerial and submersed states and, hence, is potentially able to gain nutrients from fast aquatic prey during seasonal inundation. We reveal three snapping modes of adult traps, all incorporating snap buckling, and show that millimeter-sized, much slower seedling traps do not yet incorporate such elastic instabilities. Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional–morphological and biomimetic context.

Highlights

  • The terrestrial Venus flytrap (Dionaea muscipula) is certainly the most iconic carnivorous plant [1,2,3], but the spectacular movement of its snap traps (Figure 1) is not yet fully understood

  • The Venus flytrap (Dionaea muscipula) can be considered as one of the most extensively investigated carnivorous plants, knowledge is still scarce about diversity of the snap-trap motion, the functionality of snap traps under varying environmental conditions, and their opening motion

  • Dionaea seedlings already possess a carnivorous habit [15], but nothing is known about trap closure kinematics in such an early stage of growth

Read more

Summary

Introduction

The terrestrial Venus flytrap (Dionaea muscipula) is certainly the most iconic carnivorous plant [1,2,3], but the spectacular movement of its snap traps (Figure 1) is not yet fully understood. The median snapping duration of seedling traps is 7.63 s (IQR: 8.61 s; min: 4.96 s; max: 21.82 s) (n = 12), which is highly significantly longer than the closing durations found for adult traps (Wilcoxon rank sum test, W = 0; p < 0.001) (Figure 6b), and showed no correlation with the trap lengths (Spearman‘s rho = −0.11) (Figure 6c). The seedling trap motions are very continuous and not characterized by the otherwise typical movement steps differing in speed observed in adult traps (slow, fast, slow) (Figure 7).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.