Abstract

This article focuses on inferring critical comparative conclusions as far as the application of both linear and non-linear risk measures in non-convex portfolio optimization problems. We seek to co-assess a set of sophisticated real-world non-convex investment policy limitations, such as cardinality constraints, buy-in thresholds, transaction costs, particular normative rules, etc. within the frame of four popular portfolio selection cases: (a) the mean-variance model, (b) the mean-semi variance model, (c) the mean-MAD (mean-absolute deviation) model and (d) the mean-semi MAD model. In such circumstances, the portfolio selection process reflects to a mixed-integer bi-objective (or in general multiobjective) mathematical programme. We precisely develop all corresponding modelling procedures and then solve the underlying problem by use of a novel generalized algorithm, which was exclusively introduced to cope with the above-mentioned singularities. The validity of the attempt is verified through empirical testing on the S&P 500 universe of securities. The technical conclusions obtained not only confirm certain findings of the particular limited existing theory but also shed light on computational issues and running times. Moreover, the results derived are characterized as encouraging enough, since a sufficient number of efficient or Pareto optimal portfolios produced by the models appear to possess superior out-of-sample returns with respect to the benchmark.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.