Abstract

Two experiments were conducted to assess the physiological effects of freshwater exposure and amoebic gill disease (AGD) in marine Atlantic salmon ( Salmo salar L.). The first experiment monitored marine salmon during a 3 h freshwater exposure, the standard treatment for AGD in Tasmania. The second experiment described the gill mucous cell histochemistry for freshwater adapted and seawater acclimated fish (AGD affected and unaffected) for possible correlations to ionoregulation. When exposed to freshwater, marine Atlantic salmon experienced a minor ionoregulatory dysfunction represented by a net efflux of Cl − ions at 3 h. AGD affected fish experienced the net efflux of Cl − ions 1 h sooner, and had a significantly greater net efflux of total ammonia. Changes to gill mucous cell populations corresponded to differing salinity and the presence of AGD. In AGD affected fish, these populations significantly differed between lesion and non-lesion associated areas of the gill filament. Our results have shown changes in the ionoregulatory capacity of Atlantic salmon due to freshwater exposure and AGD. Gill mucous cell histochemistry indicates the potential importance of the mucous layer in ionoregulation and disease. In comparison to previous studies on rainbow trout, these results suggest that Atlantic salmon have a greater short-term ionoregulatory capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.