Abstract
Molecular mechanics (MM) and molecular dynamics (MD) simulation method were applied to explore the impact of temperature (220-380K) on the thermostability, sensitivity, and mechanical performance of RDX (1,3,5-trinitro-1,3,5-triazacyco-hexane)/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) energetic cocrystal and mixture models. The mechanical property, the maximum trigger bond length ([Formula: see text]), binding energy, and cohesive energy density (CED) of the pure RDX, β-HMX crystal, the cocrystal, and mixture models were acquired and compared. The results manifest that temperature has an important impact on the binding capacity between the components of the cocrystal and mixture. The binding energies decrease as the temperature rises, and the cocrystal has larger values than those of mixture. For all the models, the [Formula: see text] increases and the CEDs decrease with the rising temperature, implying that the sensitivity of the explosives increases, while the [Formula: see text] values of the cocrystal are smaller than those of HMX and the CED values are between those of RDX and β-HMX, indicating that the sensitivity has been enhanced through co-crystallization. As the temperature increases, the shear modulus (G), bulk modulus (K), and tensile modulus (E) values of all models have an evident downtrend. Simultaneously, G, K, and E values of the cocrystal model are less than those of RDX and β-HMX, while the K/G ratio and Cauchy pressure (C12-C44) are larger, signifying that co-crystallization can weaken the brittleness and enhance the ductility of the pure crystals. Compared with the mixture, the cocrystal has better ductility and stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.