Abstract

The intention of the current study is analyzing the significance of nonlinear radiation on magnetic field involving hybrid AA7075 and AA7072 alloys nanomaterials through thin needle. The scenario has been modeled mathematically by captivating the binary chemical reaction and activation energy. Similarity variables are deployed to change the system of PDE’s into nonlinear ODE’s and subsequently solved these equations through bvp4c solver. Influence of distinct material parameters on the velocity, concentration and temperature along with the correlated engineering features quantities such as drag force, heat and mass transfer rate are obtained and demonstrated via plots. The velocity of the liquid is declining function of magnetic field, while the temperature augments. In addition, obtained numerical results are contrasted through the available literature and appeared to be in admirable harmony. The current investigation shows the important features in solar hybrid alloy nanomaterials systems and aircraft technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call