Abstract

In this article, the characteristics of InP/InGaAs heterostructure-emitter bipolar transistors with 30 n-InP layer tunneling layers and a five-period InP/InGaAs superlattice are demonstrated and comparatively investigated by experimentally results and analysis. In the three devices, a 200 A n-In0.53Ga0.47As layer together with an n-InP tunneling emitter layer (or n-InP/n-InGaAs superlattice) forms heterostructure emitter to decrease collector-emitter offset voltage. The results exhibits that the largest collector current and current gain are obtained for the tunneling transistor with a 30 A n-InP tunneling emitter layer. On the other hand, some of holes injecting from base to emitter will be blocked at n-InP/n-InGaAs heterojunction due to the relatively small hole transmission coefficient in superlattice device, which will result in a considerable base recombination current in the n-InGaAs layer. Therefore, the collector current and current gain of the superlattice device are the smallest values among of the devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call