Abstract

Heavily tellurium (Te)-doped InGaP layers in tunnel junctions (TJs) grown by using metalorganic chemical vapor deposition (MOCVD) were investigated to improve the device performance of InGaP/InGaAs/Ge triple-junction solar cells. Three different doping techniques were employed to grow the Te-doped InGaP layers in the TJ; Te doping, Te and Si co-doping and Te pre-doping. Compared to other samples, the external quantum efficiency (EQE) profiles in the InGaP top cell were found to be higher for the sample with Te pre-doping. Under a concentrated light condition, higher fill factor (FF) and conversion efficiency were also observed for the sample with Te pre-doping. These indicate that the crystalline qualities of the upper TJ, composed of a p-GaAs/n-InGaP TJ, and the InGaP top cell were improved by using the Te pre-doping method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call