Abstract

Agricultural soils in oilfields have high risk for polycyclic aromatic hydrocarbon (PAH) pollution. In this study, from the Jianghan Oilfield (Hubei Province, China) with a history of >50years, 7 soil samples (OS-1 to OS-7) were collected. Subsequently, the bacterial, archaeal, and fungal community structures were investigated by Illumina MiSeq sequencing, and the relationship between microbial community structure and soil PAH content was analyzed. The results indicated that bacterial and archaeal Chao 1 indices showed a significantly negative relationship with soil PAH content, and only the bacterial Shannon index had a significantly negative relationship with soil PAH content. Moreover, the community structure of bacteria (r 2=0.9001, p=0.013) showed a stronger correlation with PAH content than that of fungi (r 2=0.7357, p=0.045), and no significant relationship was found between archaeal community structure (r 2=0.4553, p=0.262) and soil PAH content. In addition, the relative greater abundances of some bacterial genus belonging to Actinobacteria (Mycobacterium and Micromonospora) and Proteobacteria (Pseudomonas, Lysobacter, Idiomarina, Oxalobacteraceae, and Massilia), fungal genus belonging to Ascomycota (Sordariales and Pleosporales), and archaeal phylum (Euryarchaeota) were detected in the soil samples (OS-3 and OS-5) with greater PAH content. In summary, soil PAHs showed an obvious influence and selectivity on the soil microbiota. Furthermore, compared with fungi and archaea, bacteria was more sensitive to soil PAH pollution, and the diversity indices and community structure of bacteria both might be suitable indicators for assessment of soil PAH stress on the soil ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call