Abstract

Abnormally high GH/IGF-I levels, most often caused by adenomas arising from pituitary somatotrophs, generate deleterious effects. We recently described a targeted secretion inhibitor (SXN101742) comprising a GHRH domain and the endopeptidase domain of botulinum toxin serotype D (GHRH-light chain endopeptidase type D domain [LC/D] associated to a heavy chain translocation domain [HN]) able to down-regulate the GH/IGF-I axis. In the present study, we compared the effect of a single iv bolus of a related molecule developed for clinical studies (SXN101959, 1 mg/kg) with a sc infusion of the somatostatin analog octreotide (SMS201-995, 10 μg/kg · h) to lower GH/IGF-I activity in growing male rats. Ten days after administration of SXN101959 or initiation of the octreotide infusion, body and pituitary weights, body length, GH peaks, and IGF-I production were reduced by both treatments but to a greater extent with SXN101959. In contrast to unaltered GH gene expression and increased GH storage in pituitaries from octreotide-treated rats, the inhibition of GH secretion was associated with a collapse of both GH mRNA and protein level in pituitaries from SXN101959-treated rats, in line with a specific decrease in hypothalamic GHRH production, not observed with octreotide. SXN101959 did not induce major apoptotic events in anterior pituitary and exhibited a reversible mode of action with full recovery of somatotroph cell functionality 30 days after treatment. Octreotide infusion permanently decreased ghrelin levels, whereas SXN101959 only transiently attenuated ghrelinemia. Both treatments limited bone mass acquisition and altered specifically tissues development. In conclusion, SXN101959 exerts a powerful and reversible inhibitory action on the somatotropic axis. Specific features of SXN101959, including long duration of action coupled to a strong inhibition of pituitary GH synthesis, represent advantages when treating overproduction of GH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.